
Send Orders of Reprints at reprints@benthamscience.net

434 Medicinal Chemistry, 2013, 9, 434-448

 

Quantitative Structure-activity Relationships of Imidazole-containing  
Farnesyltransferase Inhibitors Using Different Chemometric Methods 

Ali Shayanfar1,2*, Saeed Ghasemi2, Somaieh Soltani2, Karim Asadpour-Zeynali3, Robert J.  
Doerksen4 and Abolghasem Jouyban5

1Liver and Gastrointestinal Diseases Research Center, Students’ Research Committee, Tabriz University of Medical  
Sciences, Tabriz, Iran 
2Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran 
3Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran 
4Department of Medicinal Chemistry and Research Institute of Pharmaceutical Sciences, School of Pharmacy, Univer-
sity of Mississippi, University, MS 38677-1848, USA 
5Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran 

Abstract: Farnesyltranseferase inhibitors (FTIs) are one of the most promising classes of anticancer agents, but though 
some compounds in this category are in clinical trials there are no marketed drugs in this class yet. Quantitative structure-
activity relationship (QSAR) models can be used for predicting the activity of FTI candidates in early stages of drug dis-
covery. In this study 192 imidazole-containing FTIs were obtained from the literature, structures of the molecules were 
optimized using Hyperchem software, and molecular descriptors were calculated using Dragon software. The most suit-
able descriptors were selected using genetic algorithms-partial least squares (GA-PLS) and stepwise regression, and indi-
cated that the volume, shape and polarity of the FTIs are important for their activities. 2D-QSAR models were prepared 
using both linear methods, i.e., multiple linear regression (MLR), and non-linear methods, i.e., artificial neural networks 
(ANN) and support vector machines (SVM). The proposed QSAR models were validated using internal and external vali-
dation methods. The results show that the proposed 2D-QSAR models are valid and that they can be applied to predict the 
activities of imidazole-containing FTIs. The prediction capability of the 2D-QSAR (linear and non-linear) models is com-
parable to and somewhat better than that of previous 3D-QSAR models and the non-linear models are more accurate than 
the linear models. 

Keywords: Imidazole-containing farnesyltransferase inhibitors, cancer, QSAR, multiple linear regression, artificial neural net-
work, support vector machine. 

INTRODUCTION 

Ras proteins play an essential role in regulating and 
stimulating proteins involved in cell growth. Mutations in 
the ras gene can cause permanent activation of proteins lead-
ing to uncontrolled cell growth and division. Mutation of the 
ras gene is found in 30% of cancers. To be activated, Ras 
proteins should be coupled with a 15-carbon isoprenyl group 
in a reaction that is catalyzed by protein farnesyltransferase 
(FT). Therefore farnesyltranseferase inhibitors (FTIs) have 
been studied extensively as candidates for interfering with 
Ras operation and hence for cancer chemotherapy. Recently, 
other mechanisms for FTIs to modulate tumor growth have 
been reported [1-5]. In addition, FTIs can cause lysis of 
Plasmodium falciparum and have been studied as novel an-
timalarial agents [6,7] and as therapeutic interventions for  
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Fig. (1). Structure of Tipifarnib. 

other parasitic diseases such as Chagas disease [8]. By inhi-
bition of FT, the signal transduction pathway was stopped 
and cell proliferation was arrested. Many classes of FTIs 
have been reported such as non-thiol, non-peptidic, imida-
zole- or non-imidazole-containing compounds, but among 
them the imidazole-containing candidates are the most active 
class of FTIs and some of them have been studied in clinical 
trials, such as tipifarnib (Fig. 1) which is currently being 
tested for treatment of acute myeloid leukemia (AML) [4, 5]. 
Because of its high potency as an FTI, many compounds 
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were synthesized based on the tipifarnib pharmacophore, but 
with modifications to its structure, such as those of Abbott 
Laboratories, based on elimination of ring B and transfer of 
ring D, which have considerable FT inhibitory activity (see 
references cited in [9]). 

Modeling and prediction of the activities of drugs and 
drug-like molecules are critical for decreasing the cost and 
time of new drug discovery as well for understanding the 
mechanism of drug action. Quantitative structure-activity 
relationships (QSAR) are mathematical or computational 
models constructed to find a correlation between the struc-
tures and the activities of drugs [10]. The most common 
kinds of QSAR models are 2D and 3D. 2D-QSAR models 
correlate the activities of drug-like molecules to structural 
patterns without consideration of the 3-dimensional (3D) 
conformations of the molecules, but 3D-QSAR models cor-
relate the activities to properties that manifestly depend on 
the 3D conformations of the molecules, such as non-covalent 
interaction fields calculated at points surrounding the mole-
cules [11].  

There are some studies predicting the activities of differ-
ent classes of FTIs in the literature using 2D-QSAR models. 
González and coworkers investigated the activities of thiol 
and non-thiol peptidomimetic FTIs using genetic neural net-
work methods [12]. Fernandez et al. correlated FTI activities 
to trihalobenzocycloheptapyridine structures with 2D auto-
correlation descriptors using multiple linear regression 
(MLR) and artificial neural network (ANN) methods [13]. 
The inhibitory activities of a benzo[f]perhydroisoindole 
(BPHI) series on FT were analyzed using partial least 
squares and response surface modeling [14]. Bayesian regu-
larized neural networks were applied to predict the activities 
of FTIs with diverse structures [15]. In addition, Chaurasia 
and coworkers proposed QSAR models to predict tetrahy-
droquinoline-based FTI activities using physicochemical 
properties [16]. Recently, FTI activities of 2,5-
diaminobenzophenone derivatives were predicted using 2D 
chemical drawings [17] and also QSAR of imidazole con-
taining tetrahydrobenzodiazepines as FTIs were studied [18]. 
Xie et al. applied 3D-QSAR models to predict the activities 
of imidazole-containing FTIs in a recent study [19,9]. They 
used comparative molecular field analysis (COMFA) and 
comparative molecular similarity indices analysis (COM-
SIA) (the most popular approaches of 3D-QSAR) to predict 
the activities of imidazole-containing FTIs [9]. However, no 
2D-QSAR study has been reported for those compounds. 
3D-QSAR models have some advantages, but also major 
disadvantages [11,20]. From a practical aspect, 2D-QSAR 
models are easy to use and can be easier and faster to de-
velop than 3D-QSAR models [21]. 2D-QSAR models avoid 
the obstacle of how best to align the 3D-structures of the 
molecules, which is required in 3D-QSAR. They can also 
prove to be practical and helpful since the QSARs can be 
expressed in terms of important and interpretable descriptors. 

In this study 192 imidazole-containing FTIs were em-
ployed to construct 2D-QSAR models using different 
chemometric methods. The models were developed using 
MLR, ANN and support vector machine (SVM) methods to 
predict the IC50s of the imidazole-containing FTIs. Molecu-
lar descriptors were selected by genetic algorithms-partial 

least squares (GA-PLS) and stepwise-regression methods 
and the validities of the developed models were checked by 
internal and external validation methods. The accuracy of the 
models was compared with that of the previously reported 
3D-QSAR models [9]. 

MATERIALS AND METHODS 

Data Set 

The pIC50 (negative logarithm of the 50% enzyme inhibi-
tory concentration) values of 192 imidazole-containing FTIs 
were collected from the literature [9]. This data set is com-
posed of eight different groups of imidazole-containing FTIs. 
Fig. (2) shows the structures of these compounds. In order to 
compare the results of this study (2D-QSAR) with the previ-
ous study (3D-QSAR), the same carefully-selected training 
and test sets were used in model development [9].  

Molecular Descriptors 

In order to calculate molecular descriptors, the structures 
of the compounds were drawn using Hyperchem 8.0 soft-
ware and pre-optimized with the molecular mechanics force 
field (MM+) method and then AM1 semiempirical calcula-
tions were performed to optimize the 3D geometries of the 
molecules with the Polak-Ribière (conjugate gradient) algo-
rithm. The optimized structures from Hyperchem 8.0 soft-
ware were fed into the Dragon 3.0 software and the molecu-
lar descriptors of these compounds were calculated.  

Selection of Descriptors 

In order to reduce the number of descriptors, the descrip-
tors of 156 compounds in the training set with more than 
50% repeated values or collinear descriptors (R>0.9) were 
excluded and then further reduction of the number of de-
scriptors was performed with GA-PLS. GA simulates the 
process of natural evolution and has been shown to be an 
acceptable method to reduce the number of descriptors [22]. 
Also a combination of PLS, a valuable tool for data reduc-
tion, and GA was applied to reduce the number of descrip-
tors [23,24]. GA-PLS was run in MATLAB 7.8 software 
using the program written by Leardi [25]. The population 
size of genetic algorithms was considered as 100. 10% of the 
descriptors with top scores were selected and then the de-
scriptor selection was done using stepwise regression. High 
correlations with response and low inter-correlation between 
descriptors (using Pearson correlation) were considered as 
selection criteria before stepwise regression.  

Model Building 

MLR Model 

The selected descriptors were used to develop a MLR 
equation using SPSS 11.5 software. Statistical properties of 
the proposed equation such as the correlation coefficient (R), 
the adjusted correlation coefficient (Radj), the standard error 
of estimate (SEE), the probability values (p-value) of each 
descriptor, and the Fischer statistic or variance ratio (F) rec-
ommended by Dearden et al. [26] were considered. The pro-
posed model was validated using the leave one-out (LOO) 
method to evaluate prediction capability of the model.  
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ANN with the Levenberg-Marquardt Algorithm 

ANNs mimic human brain process information. An ANN 
has a multilayer structure (input layer, hidden layer and out-
put layer) that consists of neurons and connections between 
neurons by synapses. Selected descriptors are neurons of the 
input layer and pIC50 values of compounds are the output 
neurons. Neurons of the hidden layer connect neurons of the 
input and output layers. This network can form a non-linear 
relationship between independent (input) and dependent 
(output) parameters. The strength of the synapse between 
two neurons is calculated by its weight [27]. There are dif-
ferent algorithms for weight update functions in the litera-
ture. Recently, the Levenberg–Marquardt algorithm was 
characterized as one of the most effective algorithm in 
QSAR study [27-29]. In this study, we used the nftool (net-
work-fitting tool) toolbox of MATLAB 7.8 software to train 
the network. This toolbox is user-friendly and uses Leven-
berg–Marquardt back propagation algorithms (Trainlim) for 
ANN training. For training a valid network to avoid over-
fitting, the 156 data points of the training set described above 
for MLR were randomly classified into training (70%), vali-
dation (15%) and test (15%) sets using the software. A three-
layer network with three neurons in the hidden layer was 
designed.  

SVM 

SVM is a statistical learning method proposed by Vapnik 
[30]. This is a relatively new non-linear method in QSAR 
study. Some QSAR models were proposed using SVM in 

recent years [31-33]. This method constructs a hyperplane in 
a multidimensional space which provides the minimum error 
by employing a non-linear kernel function for classification 
or regression tasks. There are some parameters which should 
be optimized in SVM analysis. One of the parameters is the 
capacity parameter (C) which is a regularization parameter 
that adjusts maximizing the distance from the hyperplane to 
any training set data points and minimizing the error. An-
other parameter is  which is related to noise in the data. A 
common type of kernel function is a radial basis function 
(RBF) [34-37]. This function has a parameter ( ) which 
should be optimized and controls the generalization ability of 
the SVM. The C and  parameters were optimized using the 
leave-many-out cross-validation method. SVM was per-
formed using STATISTICA 7 software. 

External Validation of the Proposed Models and Com-
parison of the Models 

In order to check the validity of the proposed models and 
to compare the prediction capabilities of the models, an ex-
ternal data set (test set) composed of 36 data points is used in 
this study. A set of statistical criteria proposed in the litera-
ture [38] for use with an external test set was considered, 
including:  

1. R2 > 0.6 
where R2 is the coefficient of determination (correlation co-
efficient) between the predicted and observed values of 
pIC50.
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Fig. (2). Structures of the studied FTIs. 
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2. (R2 R0
2 ) / R2 < 0.1  or (R2 R '0

2 ) / R2 < 0.1

where R0
2  is the correlation coefficient obtained using pre-

dicted values relative to a regression line fit to experimental 
values and required to pass through the origin and R0

'2  is the 
corresponding correlation coefficient obtained using experi-
mental values relative to a regression line fit to predicted 
values and required to pass through the origin. 

3. 0.85 K  1.15 or 0.85 K'  1.15. 
K and K' are the slopes of regression lines through the origin 
for fits to experimental and predicted data, respectively [38]. 

Another criteria also was proposed by Roy and Roy [39] 
to evaluate the external predictability of QSAR models: 

4. Rm
2 = R2 1 R2 R0

2( )
in which Rm

2  > 0.5 indicates the good external predictability 
of QSAR models. 

The accuracy of the proposed models was compared us-
ing the average absolute error (AAE), which is defined as: 

N
AE

N
pICalExperimentpICCalculated

AAE == 5050

RESULTS AND DISCUSSION 

Selection of Descriptors 

Table 1 shows the details of the selected descriptors ob-
tained using GA-PLS and stepwise regression in which less 
than 1 descriptor per 14 compounds was selected. These re-
sults show that a combination of 2D and 3D descriptors was 
best for predicting the pIC50 of the studied structures. Four of 

the selected descriptors are 2D-autocorrelation descriptors. 
These descriptors are used in QSAR studies to calculate the 
spatial distribution of molecular properties. Fernandez and 
coworkers used 2D-autocorrelation descriptors to construct 
QSAR models of trihalobenzocycloheptapyridine containing 
FTIs [13]. In addition, other 2D descriptors such as topologi-
cal, BCUT, and Galvez topological charge indices are se-
lected. Also, there are four 3D descriptors including geomet-
rical, 3D-MoRSE, WHIM and GETAWAY among the se-
lected descriptors. Based on the selected descriptors, both the 
volume and polarity of the molecules are important for the 
activity of the studied compounds. In addition, the shape of 
the molecule is important. 

A correlation matrix shows that there is no inter-
correlation (R < 0.6) between the selected descriptors (Table 
2) and reveals that the selected descriptors are linearly inde-
pendent and hence can be used together in the development 
of QSAR models. 

Model Building Using Different Methods 
The selected descriptors were used to develop QSAR 

models using MLR, ANN and SVM. A linear model was 
proposed as the simplest and most straightforward model. 
Table 3 shows the coefficients, their SEE and the p-value of 
the selected descriptors. Statistical information that is neces-
sary for validation of QSAR models is listed in Table 4 for 
the proposed models in this study. The results show that the 
correlation coefficient is acceptable and there is no signifi-
cant difference between R and Radj. Internal cross-validation 
using leave-one-out (LOO) analysis (qloo=0.727) shows that 
the proposed MLR is predictive. Fig. (3) shows the influence 
of the number of descriptors on R and Radj for the developed 
model. The increase in Radj after the addition of each descrip-
tor confirms the influence of all the selected descriptors [26]. 

Table 1. Selected Descriptors by GA-PLS and Stepwise Regression from DRAGON Software 

Number Symbol Definition Class 

1 De 
Total accessibility index / weighted by atomic Sanderson electrone-

gativities 
WHIM descriptors 

2 MATS8e 
Moran autocorrelation - lag 8 / weighted by atomic Sanderson  

electronegativities 
2D autocorrelations 

3 Mor32m 3D-MoRSE - signal 32 / weighted by atomic masses 3D-MoRSE descriptors 

4 SPH Spherosity index Geometrical descriptors 

5 BELv1 
Lowest eigenvalue n. 1 of Burden matrix / weighted by atomic van 

der Waals volumes 
BCUT descriptors 

6 MATS7v 
Moran autocorrelation - lag 7 / weighted by atomic van der Waals 

volumes 
2D autocorrelations 

7 R1v+ 
Maximal autocorrelation of lag 1 / weighted by atomic van der Waals 

volumes 
GETAWAY descriptors 

8 TIE E-state topological parameter Topological descriptors 

9 BEHe8 
Highest eigenvalue n. 8 of Burden matrix / weighted by atomic  

Sanderson electronegativities 
BCUT descriptors 

10 GGI10 Topological charge index of order 10 Galvez topological charge indices 

11 GATS6e 
Geary autocorrelation - lag 6 / weighted by atomic Sanderson  

electronegativities 
2D autocorrelations 
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Table 2. Correlation Matrix Between Selected Descriptors 

 De MATS8e Mor32m SPH BELv1 MATS7v R1v+ TIE BEHe8 GGI10 GATS6e 

De 1.00           

MATS8e 0.24 1.00          

Mor32m 0.25 0.00 1.00         

SPH 0.23 0.15 0.07 1.00        

BELv1 0.29 0.40 0.08 0.08 1.00       

MATS7v 0.43 0.41 0.14 0.10 0.39 1.00      

R1v+ 0.47 0.21 0.04 0.16 0.53 0.22 1.00     

TIE 0.03 0.41 0.13 0.02 0.05 0.20 0.26 1.00    

BEHe8 0.09 0.04 0.28 0.19 0.41 0.19 0.56 0.49 1.00   

GGI10 0.19 0.32 0.33 0.07 0.04 0.27 0.28 0.62 0.56 1.00  

GATS6e 0.21 0.08 0.00 0.09 0.10 0.20 0.34 0.05 0.04 0.07 1.00 

Table 3. Coefficients and Statistical Properties of Selected Descriptors of the Most Accurate MLR Model 

Descriptors Coefficient SEE p-value 

Constant 32.1519 7.6633 <0.001 

De 3.6908 1.3815 0.008 

MATS8e 1.8430 0.8032 0.023 

Mor32m 0.8094 0.2544 0.002 

SPH 1.0655 0.3915 0.007 

BELv1 23.6167 3.8210 <0.001 

R1v+ 17.3016 5.3155 0.001 

MATS7v 2.9490 0.9424 0.002 

TIE 0.0022 0.0006 0.001 

BEHe8 2.5360 0.7510 0.001 

GGI10 1.2870 0.5666 0.025 

GATS6e 0.6081 0.2748 0.028 

Table 4. Statistical Information for the Proposed Models for the Training Set 

MLR

N R Radj SEEa Fa

Training set 156 0.775 0.756 0.478 (0.471) 232.0 (19.7) 

ANN

Training set 110 0.823 0.822 0.434 227.4 

Validation set 23 0.801 0.791 0.457 37.6 

Test set 23 0.768 0.756 0.440 30.2 

Overall 156 0.807 0.806 0.440 288.3 

SVM 

Training set 156 0.800 0.798 0.447 273.4 
aThe values are calculated according to correlation between experimental and prediction. The values in parentheses were computed using a MLR model with 11 descriptors. (F and 
SEE are dependent on the number of independent descriptors and the number of degrees of freedom [26].) 
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Fig. (3). Effects of the number of descriptors (according to Table 1) on R and Radj to evaluate the influence of the selected descriptors. 

In the next stage, data was used to develop an ANN 
model in which the number of optimal hidden neurons is 
three. The statistical parameters of the developed ANN 
model for the data set which was divided into training, vali-
dation and test sets are shown in Table 4. There are no sig-
nificant changes between statistical properties of these sets. 
In addition, external validation was performed (see Materials 
and Methods section) and the results show that the trained 
network is valid and no over-fitting occurred. 

Finally, SVM models were developed using the selected 
descriptors. The optimization of the SVM parameters (C , 
and ) was done with 10-fold cross-validation using the 
STATISTICA 7 software. A robust model is developed by 
selecting parameters that give the lowest error. The opti-
mized values of C,  and  were 7, 0.001 and 0.110 and the 
statistical properties of the proposed SVM model for the 
training set are listed in Table 4. Predicted and absolute error 
(AE) values using MLR, ANN and SVM models are listed in 
Table 5.

Table 5. Experimental, Predicted and Absolute Error (AE) Values of 156 Training and 36 Test Set Compounds 

MLR ANN SVM 
No. pIC50exp 

pIC50pred 
AE 

pIC50 pred 
AE 

pIC50pred 
AE 

Training set    

1 9.21 8.61 0.597 8.75 0.463 8.69 0.520 

2 9.43 8.96 0.467 9.13 0.304 8.98 0.445 

3 7.02 8.48 1.463 8.34 1.321 8.59 1.570 

4 8.66 8.66 0.002 8.64 0.023 8.64 0.019 

5 8.92 8.89 0.031 8.92 0.003 8.92 0.003 

6 9.31 8.59 0.716 8.82 0.491 8.79 0.518 

7 9.21 8.72 0.486 8.58 0.631 8.62 0.586 

8 7.89 8.48 0.593 8.65 0.756 8.45 0.555 

9 8.89 9.06 0.168 9.07 0.180 8.92 0.032 

10 9.36 9.14 0.216 9.28 0.077 9.07 0.295 

11 8.12 8.37 0.254 8.39 0.270 8.38 0.264 

12 9.43 8.80 0.633 9.13 0.304 8.92 0.512 

13 9.22 8.95 0.272 8.65 0.569 8.88 0.336 

14 8.08 8.44 0.355 8.56 0.482 8.33 0.249 

15 9.09 8.21 0.877 8.21 0.880 8.42 0.665 

16 9.04 9.35 0.311 9.16 0.120 9.21 0.165 
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Table 5. contd…. 

MLR ANN SVM 
No. pIC50exp 

pIC50pred 
AE 

pIC50 pred 
AE 

pIC50pred 
AE 

17 8.89 9.29 0.402 9.09 0.202 9.04 0.154 

18 9.34 8.38 0.956 8.72 0.619 8.47 0.874 

19 9.57 8.80 0.770 8.92 0.645 8.97 0.600 

20 10.00 8.71 1.293 8.87 1.131 8.92 1.081 

21 8.37 8.44 0.066 8.68 0.314 8.37 0.004 

22 8.77 7.91 0.865 8.03 0.738 7.96 0.806 

23 8.52 8.65 0.134 8.85 0.328 8.84 0.317 

24 9.24 8.87 0.368 8.95 0.293 9.08 0.156 

25 8.52 8.79 0.267 8.91 0.387 9.01 0.494 

26 8.00 7.93 0.067 7.81 0.193 8.00 0.004 

27 6.47 7.42 0.947 7.40 0.932 7.67 1.200 

28 8.17 8.87 0.702 8.79 0.624 8.76 0.592 

29 9.02 9.14 0.118 9.27 0.254 9.02 0.003 

30 8.19 8.00 0.190 7.87 0.319 8.04 0.150 

31 8.70 8.58 0.121 8.28 0.415 8.54 0.161 

32 9.21 8.95 0.258 8.89 0.322 8.98 0.229 

33 9.37 8.80 0.571 8.65 0.721 8.67 0.702 

34 9.12 8.84 0.278 8.97 0.154 8.81 0.307 

35 9.06 9.01 0.053 9.01 0.045 8.96 0.103 

36 9.40 8.76 0.639 8.76 0.639 8.63 0.773 

37 9.08 8.82 0.256 8.91 0.167 8.82 0.264 

38 9.00 9.31 0.315 9.00 0.005 9.07 0.074 

39 8.70 9.16 0.456 9.32 0.615 9.08 0.375 

40 8.77 9.27 0.500 8.73 0.038 9.04 0.271 

41 7.92 8.20 0.279 8.22 0.297 8.10 0.181 

42 7.24 7.70 0.463 7.39 0.154 7.82 0.576 

43 8.09 8.87 0.783 8.56 0.472 8.70 0.605 

44 8.07 8.39 0.322 8.69 0.623 8.26 0.192 

45 7.60 8.13 0.531 7.98 0.377 7.96 0.360 

46 9.04 8.68 0.362 9.10 0.055 8.39 0.655 

47 9.05 9.40 0.348 9.06 0.007 9.05 0.003 

48 9.00 8.77 0.228 8.97 0.031 8.96 0.036 

49 9.01 9.05 0.036 9.06 0.046 9.01 0.001 

50 9.24 8.94 0.299 9.17 0.067 8.97 0.267 

51 9.14 8.56 0.580 8.80 0.342 8.65 0.493 

52 9.60 9.71 0.109 9.50 0.099 9.64 0.045 
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Table 5. contd…. 

MLR ANN SVM 
No. pIC50exp 

pIC50pred 
AE 

pIC50 pred 
AE 

pIC50pred 
AE 

53 8.41 9.10 0.687 9.04 0.627 9.24 0.834 

54 9.74 9.00 0.741 9.11 0.632 9.00 0.735 

55 9.74 8.78 0.956 8.88 0.855 8.81 0.930 

56 9.29 9.05 0.239 9.16 0.129 9.13 0.157 

57 9.15 9.29 0.145 9.38 0.227 9.27 0.119 

58 9.35 8.84 0.507 9.09 0.256 9.07 0.281 

59 7.36 7.95 0.594 7.70 0.341 8.22 0.858 

60 8.72 8.15 0.575 8.51 0.213 8.12 0.597 

61 8.32 8.03 0.285 7.88 0.438 8.05 0.270 

62 8.72 8.34 0.377 8.42 0.296 8.45 0.274 

63 8.26 8.21 0.045 8.19 0.073 8.30 0.035 

64 7.33 8.20 0.870 8.23 0.897 8.25 0.921 

65 8.82 8.28 0.542 8.12 0.701 8.32 0.499 

66 8.68 7.70 0.981 7.62 1.059 7.79 0.886 

67 6.80 7.63 0.828 7.36 0.559 7.85 1.046 

68 9.70 8.90 0.796 8.92 0.784 8.81 0.894 

69 8.46 8.79 0.332 8.86 0.398 8.84 0.380 

70 8.89 8.92 0.029 8.83 0.063 8.89 0.001 

71 8.70 8.93 0.227 8.92 0.216 8.70 0.000 

72 8.89 8.97 0.082 8.91 0.016 8.71 0.178 

73 8.44 8.61 0.165 8.70 0.264 8.46 0.020 

74 8.74 8.40 0.343 8.57 0.166 8.48 0.256 

75 8.77 8.07 0.697 8.12 0.653 8.37 0.398 

76 8.59 8.12 0.472 8.26 0.329 8.45 0.140 

77 8.89 8.42 0.468 8.48 0.413 8.67 0.218 

78 8.11 8.06 0.052 8.32 0.206 8.11 0.002 

79 8.12 8.49 0.372 8.81 0.690 8.43 0.308 

80 8.04 7.70 0.344 8.00 0.044 8.04 0.003 

81 8.00 8.19 0.190 8.48 0.484 8.26 0.262 

82 7.08 7.72 0.640 7.74 0.661 7.70 0.616 

83 7.27 7.51 0.237 7.49 0.218 7.53 0.262 

84 7.21 7.56 0.354 7.36 0.147 7.47 0.263 

85 7.27 8.05 0.779 7.83 0.562 7.94 0.674 

86 7.29 7.30 0.008 7.39 0.097 7.29 0.001 

87 7.06 7.14 0.077 6.85 0.206 7.12 0.062 

88 7.77 8.13 0.357 7.80 0.027 7.98 0.210 
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Table 5. contd…. 

MLR ANN SVM 
No. pIC50exp 

pIC50pred 
AE 

pIC50 pred 
AE 

pIC50pred 
AE 

89 7.23 7.81 0.579 7.48 0.248 7.76 0.534 

90 8.08 7.94 0.144 7.98 0.096 8.08 0.005 

91 7.80 7.68 0.119 7.73 0.067 7.80 0.003 

92 8.09 7.48 0.606 7.48 0.611 7.56 0.527 

93 7.92 8.05 0.128 8.20 0.281 8.12 0.202 

94 7.21 7.72 0.510 7.80 0.589 7.76 0.553 

95 7.74 7.74 0.002 7.75 0.010 7.73 0.013 

96 8.40 8.09 0.309 8.36 0.043 8.08 0.325 

97 7.42 7.68 0.257 7.69 0.274 7.79 0.371 

98 7.49 7.49 0.003 7.44 0.049 7.57 0.080 

99 7.32 7.60 0.283 7.46 0.139 7.57 0.248 

100 7.96 7.65 0.313 7.58 0.381 7.61 0.353 

101 7.92 7.36 0.565 7.28 0.640 7.35 0.566 

102 7.48 8.00 0.518 8.09 0.610 8.08 0.604 

103 7.21 7.41 0.203 7.33 0.119 7.50 0.294 

104 8.21 7.76 0.446 7.87 0.338 7.89 0.320 

105 7.57 7.53 0.043 7.54 0.028 7.58 0.007 

106 7.72 7.63 0.089 7.48 0.242 7.72 0.003 

107 7.82 7.74 0.084 7.75 0.066 7.79 0.027 

108 7.89 7.72 0.168 7.52 0.371 7.83 0.061 

109 7.54 7.45 0.090 7.35 0.186 7.54 0.002 

110 8.77 8.37 0.399 8.46 0.311 8.32 0.451 

111 8.21 8.22 0.007 8.13 0.084 8.24 0.029 

112 8.39 7.98 0.413 8.12 0.265 7.93 0.459 

113 8.57 8.68 0.106 8.73 0.159 8.57 0.004 

114 8.05 8.38 0.333 8.53 0.476 8.38 0.333 

115 8.80 9.00 0.197 8.81 0.010 8.88 0.078 

116 8.68 9.30 0.624 9.21 0.528 9.26 0.584 

117 9.08 9.24 0.160 9.26 0.178 9.18 0.104 

118 8.82 8.98 0.157 9.04 0.225 8.97 0.145 

119 8.57 8.92 0.352 9.01 0.443 8.84 0.272 

120 8.57 8.89 0.322 8.90 0.333 8.86 0.288 

121 8.20 8.91 0.710 8.92 0.723 8.89 0.687 

122 9.15 9.13 0.018 9.21 0.058 9.12 0.028 

123 8.96 9.12 0.162 9.15 0.192 9.07 0.106 

124 8.74 8.85 0.106 8.87 0.127 8.81 0.068 



Quantitative Structure-activity Relationships of Imidazole-containing Medicinal Chemistry, 2013, Vol. 9, No. 3     443

Table 5. contd…. 

MLR ANN SVM 
No. pIC50exp 

pIC50pred 
AE 

pIC50 pred 
AE 

pIC50pred 
AE 

125 9.29 8.88 0.412 8.88 0.411 8.88 0.408 

126 9.39 9.13 0.260 9.11 0.280 9.25 0.142 

127 9.14 8.93 0.215 8.91 0.228 8.97 0.168 

128 9.38 8.87 0.513 8.97 0.408 9.02 0.357 

129 9.16 8.67 0.490 8.70 0.457 8.82 0.340 

130 9.01 9.14 0.129 9.24 0.230 9.01 0.005 

131 9.12 9.17 0.049 9.22 0.096 9.13 0.005 

132 9.00 9.07 0.070 8.83 0.166 9.08 0.075 

133 9.34 9.64 0.303 9.07 0.271 9.34 0.003 

134 9.11 9.17 0.065 9.28 0.168 9.08 0.030 

135 9.38 9.13 0.246 9.07 0.314 9.02 0.363 

136 9.09 9.68 0.592 9.08 0.013 9.33 0.244 

137 9.44 9.03 0.410 9.12 0.323 9.00 0.437 

138 9.05 8.92 0.135 9.00 0.053 8.93 0.124 

139 8.41 8.98 0.566 8.66 0.247 8.90 0.495 

140 8.89 8.68 0.213 8.65 0.241 8.74 0.153 

141 8.19 8.58 0.392 8.55 0.362 8.74 0.553 

142 9.07 9.32 0.248 9.08 0.011 9.07 0.001 

143 10.44 9.38 1.062 9.35 1.086 9.35 1.088 

144 9.30 8.89 0.406 9.08 0.225 9.03 0.269 

145 7.15 7.86 0.707 7.54 0.385 7.75 0.604 

146 8.28 8.50 0.218 8.57 0.290 8.43 0.148 

147 8.00 8.34 0.337 8.17 0.166 8.26 0.257 

148 8.92 8.88 0.035 8.91 0.014 8.92 0.004 

149 8.12 8.73 0.609 8.65 0.535 8.70 0.575 

150 7.96 8.27 0.313 8.50 0.537 8.37 0.409 

151 7.92 8.60 0.678 8.51 0.592 8.71 0.792 

152 7.72 8.67 0.950 8.94 1.221 8.71 0.994 

153 8.52 8.42 0.101 8.72 0.199 8.52 0.001 

154 8.64 8.70 0.057 8.70 0.061 8.64 0.005 

155 8.30 8.69 0.386 8.96 0.664 8.67 0.365 

156 8.68 8.57 0.108 8.80 0.122 8.58 0.101 

  Test set 

157 8.85 8.73 0.117 8.71 0.139 8.82 0.031 

158 8.37 8.43 0.064 8.63 0.257 8.36 0.006 

159 8.36 8.77 0.411 8.88 0.519 9.00 0.636 



444    Medicinal Chemistry, 2013, Vol. 9, No. 3 Shayanfar et al. 

Table 5. contd…. 

MLR ANN SVM 
No. pIC50exp 

pIC50pred 
AE 

pIC50 pred 
AE 

pIC50pred 
AE 

160 8.82 8.59 0.226 8.80 0.020 8.88 0.061 

161 8.32 8.78 0.457 8.82 0.504 8.97 0.655 

162 8.32 8.38 0.065 8.23 0.094 8.16 0.163 

163 9.19 8.78 0.405 9.03 0.163 8.83 0.359 

164 7.17 8.49 1.316 8.42 1.249 8.40 1.225 

165 9.29 8.64 0.652 8.75 0.539 8.66 0.627 

166 9.09 8.93 0.158 9.05 0.038 9.14 0.051 

167 9.80 9.75 0.051 9.43 0.375 9.56 0.236 

168 9.10 9.11 0.009 8.82 0.279 9.11 0.013 

169 7.85 8.85 0.997 8.52 0.670 8.85 0.998 

170 8.92 8.64 0.284 8.88 0.042 8.73 0.186 

171 7.89 7.56 0.326 7.70 0.192 7.58 0.312 

172 7.23 7.51 0.284 7.42 0.190 7.63 0.401 

173 7.15 7.74 0.595 7.80 0.647 7.74 0.595 

174 7.72 7.68 0.037 7.54 0.176 7.72 0.003 

175 7.89 7.68 0.212 7.64 0.248 7.69 0.203 

176 7.70 7.68 0.018 7.67 0.033 7.65 0.054 

177 7.89 8.44 0.549 9.02 1.131 8.22 0.327 

178 8.12 7.84 0.280 7.98 0.135 7.93 0.187 

179 7.42 7.70 0.285 7.66 0.244 7.80 0.383 

180 7.09 7.98 0.888 7.86 0.770 7.85 0.764 

181 9.36 9.00 0.364 9.08 0.280 8.98 0.379 

182 9.31 9.59 0.277 9.18 0.126 9.34 0.029 

183 8.21 9.05 0.841 8.83 0.625 8.90 0.692 

184 9.17 9.05 0.117 9.05 0.120 9.22 0.051 

185 9.38 8.92 0.458 8.89 0.493 9.06 0.316 

186 8.89 9.23 0.335 9.25 0.355 9.14 0.250 

187 8.70 9.05 0.349 8.91 0.207 9.10 0.401 

188 9.14 9.31 0.171 9.30 0.161 9.34 0.204 

189 8.72 8.71 0.006 8.72 0.001 8.55 0.168 

190 8.96 8.88 0.076 9.23 0.270 8.83 0.132 

191 8.89 8.68 0.209 8.82 0.071 8.68 0.211 

192 8.68 8.50 0.181 8.66 0.017 8.54 0.144 

External Validation of the Proposed Models 

To confirm that the models would be useful for applica-
tion to compounds other than those in the training set and for 

comparison of the three proposed models, external validation 
was performed using the 36 data point test set that was not 
used in descriptor selection and model building. The pre-
dicted values for the test set for different models are given in 
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Table 5. Fig. (4) shows the experimental versus predicted 
values for training (156 data points) and test sets (36 data 
points). The AAE values of training and test compounds are 
summarized in Table 6. Careful review of these data reveals 
that the developed models possess good prediction capabil-
ity. To further confirm this observation, some statistical cri-

teria for evaluating the prediction capability and robustness 
of the model were calculated for the external test set (see 
Table 7) and revealed that the proposed models built using 
MLR, ANN and SVM are robust and valid for external pre-
diction.  

Table 6. AAE's of the Proposed Models Using Different Chemometrics Methods 

AAE of Training Set (N=156) AAE of Test Set (N=36) 

MLR 0.375±0.279 0.335±0.300 

ANN 0.342±0.273 0.316±0.299 

SVM 0.331±0.303 0.318±0.291 

Fig. (4). Experimental versus predicted pIC50 values using MLR, ANN and SVM models. 

MLR

6

6.5

7

7.5

8

8.5

9

9.5

10

6 7 8 9 10 11Exprimental

Training set
Test set

 

ANN

6

6.5

7

7.5

8

8.5

9

9.5

10

6 7 8 9 10 11Exprimental

Training set
Test set

 

SVM

6

6.5

7

7.5

8

8.5

9

9.5

10

6 7 8 9 10 11Exprimental

Training set
Test set

 

�
��

�
��

��
�

�
��

�
��

��
�

�
��

�
��

��
�



446 Medicinal Chemistry, 2013, Vol. 9, No. 3 Shayanfar et al. 

Comparison of the MLR, ANN and SVM 2D-models and 
3D-models  

Table 5 shows the predicted pIC50 values along with AE 
values for the MLR, ANN and SVM models for 192 data 
points (156 in the training set and 36 in the test set). The 
AAE’s for the ANN and SVM models are better than those 
for the MLR model (Table 6) and R for these non-linear 
models is also greater than that for the MLR model (Tables 4
and 7), revealing that the SVM and ANN models are more 
accurate than the MLR model. 

Also we compared AAE values of the new models for the 
test set (36 data points) with those of the 3D-QSAR models 
using COMFA and COMSIA [9] in Fig. (5). These results 
show that the 2D-QSAR models predict the IC50’s of imida-
zole-based FTIs in the test set more accurately than the 3D-
QSAR models. Considering that 2D-QSAR models are sim-
pler than 3D-QSAR models, the new models represent a sig-
nificant advance over the previous work. 

CONCLUSION 

In this study different chemometric methods were used to 
build models to predict the activities of imidazole-containing 
farnesyltransferase inhibitors. A large collection of descrip-
tors was used to represent the FTI structures. The results 

indicate that the volume, shape and polarity are important for 
the activity of the studied compounds and the proposed 2D-
QSAR models constructed using linear (MLR) and non-
linear (ANN and SVM) methods can be used to predict accu-
rately the activities of FTIs. The non-linear models are supe-
rior to the linear model in this work. In addition, the predic-
tion accuracy of the 2D-QSAR models is comparable and 
slightly better than that of previously published 3D-QSAR 
models. The proposed models could be used in drug design 
for evaluation of novel imidazole-containing FTIs.  
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Table 7. Statistical Parameters for External Validation of Three Proposed Models 

Statistical Criteria MLR ANN SVM 

R2 > 0.6 0.642 0.674 0.677 

(R2 R0
2 ) / R2 < 0.1  0.000 0.003 0.003 

0.85  K  1.15 0.988 0.988 
0.987 

Rm
2 > 0.5 0.633 0.644 0.644 

Fig. (5). Comparison of the accuracy of different 3D-QSAR models (a to h) and the proposed 2D-QSAR models (i: MLR, j: ANN, k: SVM) 
in this study for 36 members of the test data set.  
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